Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37279467

RESUMO

Deoxyribonucleic acid (DNA) methylation (DNAm) is an important epigenetic mechanism that plays a role in chromatin structure and transcriptional regulation. Elucidating the relationship between DNAm and gene expression is of great importance for understanding its role in transcriptional regulation. The conventional approach is to construct machine-learning-based methods to predict gene expression based on mean methylation signals in promoter regions. However, this type of strategy only explains about 25% of gene expression variation, and hence is inadequate in elucidating the relationship between DNAm and transcriptional activity. In addition, using mean methylation as input features neglects the heterogeneity of cell populations that can be reflected by DNAm haplotypes. We here developed TRAmaHap, a novel deep-learning framework that predicts gene expression by utilizing the characteristics of DNAm haplotypes in proximal promoters and distal enhancers. Using benchmark data of human and mouse normal tissues, TRAmHap shows much higher accuracy than existing machine-learning based methods, by explaining 60~80% of gene expression variation across tissue types and disease conditions. Our model demonstrated that gene expression can be accurately predicted by DNAm patterns in promoters and long-range enhancers as far as 25 kb away from transcription start site, especially in the presence of intra-gene chromatin interactions.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Animais , Camundongos , Haplótipos , Cromatina/genética
2.
Bioinformatics ; 38(22): 5141-5143, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179079

RESUMO

SUMMARY: Bisulfite sequencing remains the gold standard technique to detect DNA methylation profiles at single-nucleotide resolution. The DNA methylation status of CpG sites on the same fragment represents a discrete methylation haplotype (mHap). The mHap-level metrics were demonstrated to be promising cancer biomarkers and explain more gene expression variation than average methylation. However, most existing tools focus on average methylation and neglect mHap patterns. Here, we present mHapTk, a comprehensive python toolkit for the analysis of DNA mHap. It calculates eight mHap-level summary statistics in predefined regions or across individual CpG in a genome-wide manner. It identifies methylation haplotype blocks, in which methylations of pairwise CpGs are tightly correlated. Furthermore, mHap patterns can be visualized with the built-in functions in mHapTk or external tools such as IGV and deepTools. AVAILABILITY AND IMPLEMENTATION: https://jiantaoshi.github.io/mhaptk/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Análise de Sequência de DNA/métodos , Ilhas de CpG
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...